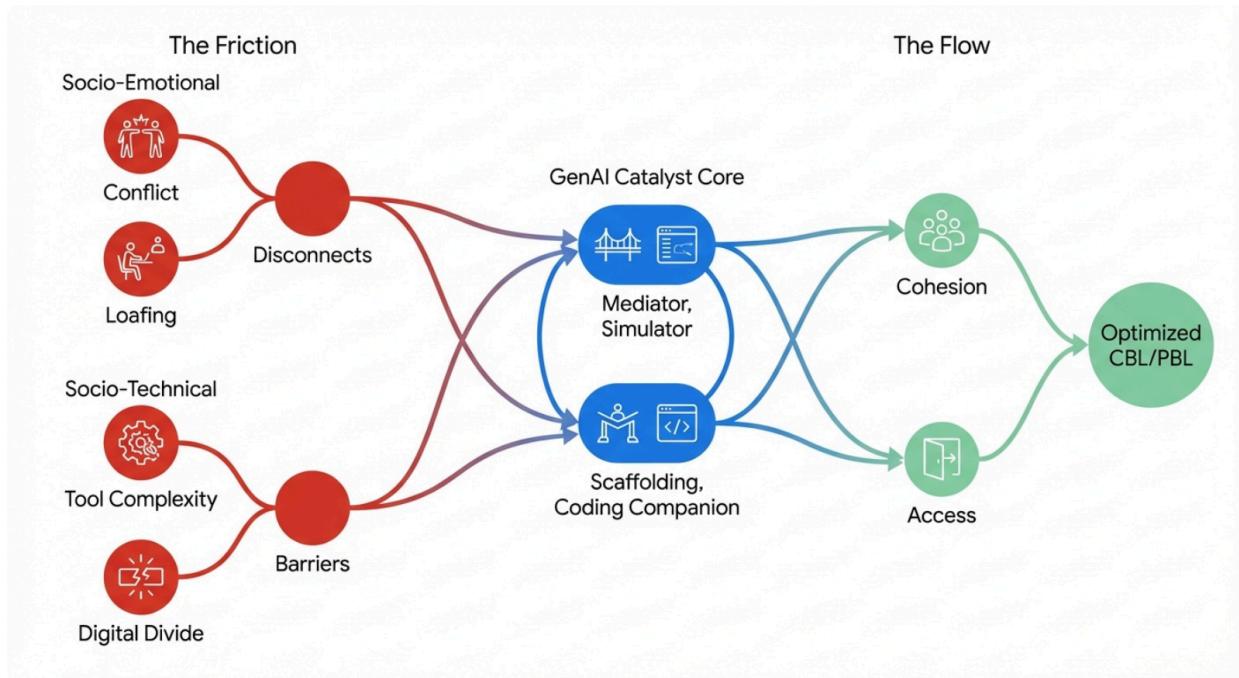


Bridging the Gap: Generative AI as a Catalyst for Socio-Emotional and Socio-Technical Resilience in Challenge-Based and Problem-Based Learning


Sabah Farshad; STAYTEAM RESEARCH

1. Introduction: The Unfulfilled Promise of Active Pedagogies

The contemporary landscape of higher education and professional training has decisively shifted away from passive, didactic instruction toward active, student-centered methodologies. Foremost among these are Challenge-Based Learning (CBL) and Problem-Based Learning (PBL), pedagogical frameworks predicated on the conviction that deep, transferable learning occurs best when students engage with authentic, complex problems—often in collaborative settings—that mirror the volatility of the real world.¹ These methodologies are not merely instructional tactics but are viewed as essential vehicles for developing the "Industry 4.0" and "21st-century skills" required by the modern workforce, including critical thinking, complex problem-solving, and interdisciplinary collaboration.³

However, the efficacy of these methodologies is frequently compromised by a sharp divergence between pedagogical theory and classroom reality. While the cognitive benefits of these approaches are well-documented, the *implementation* is fraught with friction points that can be broadly categorized into two domains: **socio-emotional barriers** and **socio-technical hurdles**. The transition from traditional lectures to student-driven inquiry demands a level of emotional regulation, interpersonal competence, and technical fluency that many learners—and indeed, many institutions—are ill-equipped to manage without significant scaffolding.⁵

The GenAI Intervention Matrix in Active Learning

Mapping the disconnects in collaborative pedagogy: GenAI serves as a bridge, transforming interpersonal conflict into constructive dialogue and technical barriers into accessible workflows.

1.1 Defining the Pedagogical Terrain: CBL vs. PBL

To understand the specific interventions Generative AI (GenAI) can offer, one must first distinguish between the nuances of these frameworks.

- **Challenge-Based Learning (CBL):** Originating from initiatives like the "Apple Classrooms of Tomorrow," CBL is a distinctively learner-driven pedagogy. It revolves around a framework of "Engage, Investigate, and Act".¹ The "Challenge" is typically a broad, urgent, and open-ended societal or environmental issue (e.g., "Sustainability" or "Climate Change") derived from the UN Sustainable Development Goals (SDGs).¹ Learners define the specific dimensions of the challenge, conduct multidisciplinary research, and—crucially—must design and implement a solution that has relevancy within a stakeholder context.¹ The "Act" phase distinguishes CBL from other forms of inquiry; it demands tangible intervention in the real world.⁹
- **Problem-Based Learning (PBL):** While similar in its collaborative nature, PBL often utilizes hypothetical or "ill-structured" problems where the primary goal is the acquisition of knowledge and the development of reasoning skills rather than the implementation of a solution.⁷ In PBL, the problem serves as the stimulus for learning specific content,

whereas in CBL, the challenge is the driver for action.⁸

Despite their differences, both methodologies share a dependency on **collaborative engagement**. They assume that students can effectively work in teams to co-construct knowledge. This assumption, however, relies on the presence of "social interdependence"—the understanding that the success of each member is linked to the success of the group.¹⁰ When this interdependence fails due to socio-emotional conflict or technical disparity, the pedagogical model collapses.

1.2 The Emergence of Generative AI as a Pedagogical Catalyst

The rapid proliferation of Generative AI—encompassing Large Language Models (LLMs) like GPT-4, image generators like Stable Diffusion, and coding assistants like GitHub Copilot—presents a unique opportunity to address these structural weaknesses. Unlike previous educational technologies that focused on content delivery (e.g., MOOCs) or administrative efficiency (e.g., LMS), GenAI operates as a cognitive and social prosthetic. It is capable of generating text, code, images, and simulations that can scaffold the learning process in real-time.¹²

The historical context of AI in education traces back to early chatbots like ELIZA in the 1960s, which used simple pattern matching to simulate conversation.¹² However, modern GenAI systems, powered by transformer architectures and deep learning, possess the capability to understand context, generate novel solutions, and simulate complex human personas.¹² This report analyzes how these capabilities can be harnessed to resolve the persistent socio-emotional and socio-technical friction points in active learning, transforming GenAI from a threat to academic integrity into an essential partner in the learning ecosystem.

2. Socio-Emotional Dynamics: Solving the "Human Problem" in Collaboration

In both CBL and PBL, the "team" is the fundamental unit of production. The pedagogical assumption is that students will naturally synergize diverse perspectives to co-create solutions.² However, the literature reveals that without structured intervention, the social reality of the classroom often undermines this ideal. The most pervasive barriers to success in these frameworks are not intellectual deficiencies, but failures in socio-emotional regulation and group dynamics.

2.1 The Crisis of Conflict and Psychological Safety

2.1.1 The Anatomy of Intragroup Conflict

Conflict in collaborative learning is inevitable and, when managed correctly, beneficial. However, research identifies three distinct types of intragroup conflict:

1. **Task-related conflict:** Disagreements about the work itself or the content of the assignment.
2. **Process-related conflict:** Disagreements about *how* to work, role allocation, or timelines.
3. **Relationship-related conflict:** Interpersonal animosity and friction unrelated to the task.¹⁰

While task conflict can catalyze deeper critical thinking ("socio-cognitive conflict"), process and relationship conflicts are corrosive. They lead to "emotional disruption," which diverts cognitive resources away from the learning objective toward managing negative affect.¹⁵ If these negative emotions are not regulated, they escalate into full-blown relationship conflict, leading to a breakdown in collaboration. Barron categorized these challenges into subtypes such as "suppressing others' ideas," "jealousy of others' expertise," and "divergent communication methods".¹⁵

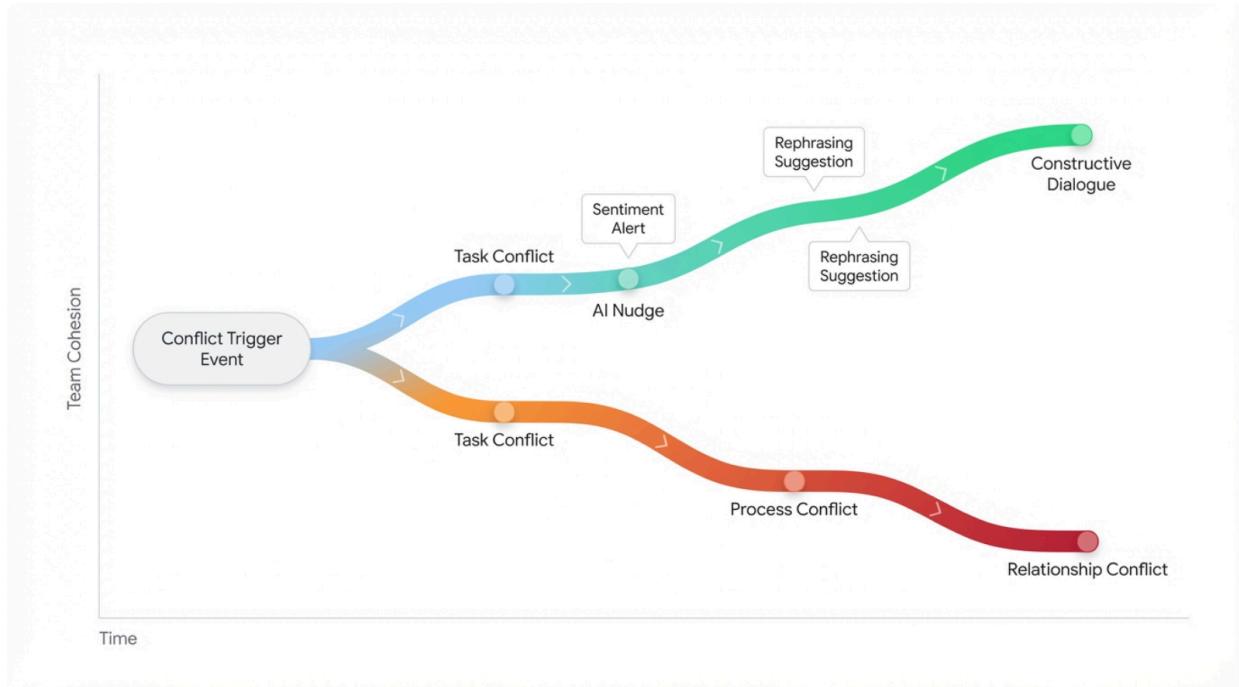
In traditional CBL/PBL settings, students often lack the emotional intelligence to distinguish between attacking an idea and attacking a peer. When task conflict devolves into relationship conflict, **psychological safety**—the shared belief that the team is safe for interpersonal risk-taking—evaporates.¹⁶ Without psychological safety, students withdraw, engagement plummets, and the "collective intelligence" of the group drops below the level of its individual members. Participants in agile and collaborative environments report that low psychological safety leads to dismissal of views and withdrawal from interaction, particularly among minority or less dominant voices.¹⁶

2.1.2 The "Black Box" of Student Collaboration

A significant structural problem in CBL is the opacity of group work to the instructor. Teachers cannot monitor every interaction within a breakout group or a private chat channel. Consequently, toxic behaviors such as **social loafing** (where one member contributes nothing), "free-riding," or dominance by aggressive personalities often go undetected until the final assessment, at which point it is too late to intervene.¹⁵ This lack of visibility creates an environment where socio-emotional dysregulation festers. Studies show that low-performing groups are more likely to become stuck in states of "Limited Cognitive Engagement" and "Lone Neutral Participation," hindering the co-construction of knowledge.¹⁵

2.2 GenAI as the Socio-Emotional Mediator

Generative AI offers a novel solution to these deep-seated problems by functioning as an "always-on" facilitator and an impartial mediator. Unlike human instructors, AI agents can scale to monitor and guide an infinite number of simultaneous interactions, providing real-time interventions that stabilize group dynamics.


2.2.1 Real-Time Sentiment Analysis and Conflict Detection

The integration of LLMs into collaborative platforms allows for the continuous analysis of communication patterns. GenAI can detect the linguistic markers of escalating conflict or disengagement—such as a shift from "we" to "you" language, the use of aggressive sentiment, or prolonged silence from specific members.¹⁸

Current research indicates that hybrid AI-human systems can achieve significantly higher resolution rates in workplace and educational disputes compared to traditional methods by identifying conflict precursors early.¹⁸ In a CBL context, an AI agent can intervene privately, prompting a student to rephrase a hostile comment ("It seems like this message might be read as aggressive; would you like to rephrase it to focus on the task?") or nudging a quiet student to contribute ("We haven't heard from Student B yet; do you have thoughts on the proposed timeline?").¹⁷ This "preventative mediation" maintains the emotional hygiene of the group without requiring constant instructor presence.

Evidence suggests that AI-driven feedback using techniques like **Motivational Interviewing (MI)** can enhance team engagement by providing secure, context-sensitive, and motivational feedback.¹⁷ By mirroring human-like MI techniques, GenAI can encourage students to reflect on their behavior and align their actions with team goals.

Altering the Trajectory: AI-Mediated Conflict Resolution in Student Teams

By detecting linguistic markers of conflict (e.g., sentiment shifts, exclusion), AI agents intervene at the 'Process Conflict' stage, preventing escalation into 'Relationship Conflict' and ensuring team viability.

2.2.2 The "Simulated Sparring Partner" for Soft Skills

One of the most profound applications of GenAI in solving socio-emotional deficits is the use of **role-play simulations**. Students often fail to navigate conflict because they have never practiced it in a low-stakes environment. GenAI can act as a "simulated teammate" that exhibits specific challenging behaviors—such as being stubborn, disengaged, or overly critical—allowing students to practice conflict resolution strategies without the social risk of alienating a real peer.²¹

For example, in a medical or business PBL scenario, an AI agent can play the role of a difficult patient or an angry client. The student must navigate the conversation, practicing empathy and de-escalation. The AI then provides immediate, private feedback on their tone, word choice, and emotional regulation.²¹ This creates a "safe sandbox" for failure, fostering the psychological safety required to develop resilience. Research confirms that these AI-driven interactions can be customized to the student's skill level, ensuring they operate within their **Zone of Proximal Development (ZPD)**—challenging enough to prompt growth but not so difficult as to cause frustration.⁷

Furthermore, LLMs allow for dynamic scenarios where the "simulated colleague" adapts their responses based on the student's diplomacy. If the student is aggressive, the AI colleague shuts down; if the student uses active listening, the AI colleague becomes cooperative. This responsive feedback loop is impossible to achieve with static case studies.²¹

2.3 Automated Feedback and Group Awareness

A persistent complaint in PBL is the "free-rider" problem, where assessment is collective but effort is individual. GenAI solves this by providing **collaborative analytics** and fostering group awareness. By analyzing the digital exhaust of the group (chat logs, document edit history, commit logs), AI can generate "collaboration dashboards" that visualize the contribution of each member.²⁰

Crucially, this is not just for surveillance; it is for **group awareness**. When a team can see a visualization of their own interaction patterns (e.g., "Student A has spoken 60% of the time, while Student B has spoken 5%"), they can self-regulate.²⁵ This "Socially Shared Regulation of Learning" (SSRL) is critical for high-performance teams. Furthermore, GenAI can generate personalized feedback summaries for each student, highlighting their strengths in collaboration and areas for growth.²⁶

Research indicates that homogenous groups (e.g., similar personality traits) and heterogeneous groups (mixed skills) benefit differently from AI intervention. AI can assist in forming "balanced group dynamics" by analyzing student profiles and creating optimal team compositions that minimize friction and maximize skill complementarity.²⁵

3. Socio-Technical Barriers: Bridging the "AI Divide" and Competency Gaps

While socio-emotional issues threaten the process of CBL/PBL, socio-technical issues threaten access and execution. Challenge-Based Learning often requires students to produce tangible solutions—prototypes, apps, data analyses, or architectural designs. This requirement inadvertently favors students with prior technical exposure, creating a hierarchy of participation based on "digital capital".⁶

3.1 The New Digital Divide: The "AI Divide"

The "digital divide" has historically referred to access to hardware and internet. However, a new, more insidious divide is emerging: the **AI Divide**. This refers to the disparity between students who have access to (and literacy in) advanced, paid GenAI tools (like GPT-4, Claude 3, or specialized coding copilots) and those relying on free, inferior models or none at all.²⁹

In a CBL project, a student with access to a high-end AI coding assistant can prototype a solution in hours, while a student without such access may struggle for days with syntax

errors. This exacerbates existing inequalities, particularly for first-generation or under-resourced students who may not even be aware of these tools' capabilities.³¹ Surveys reveal that continuing-generation students are significantly more likely to be aware of and use tools like ChatGPT compared to first-generation students (48% vs 34% awareness; 11% vs 7% usage).³¹ If CBL/PBL is to be equitable, institutions must address this divide not by banning AI, but by providing equitable access and training as a baseline scaffold.

3.2 Democratizing Technical Capability: The "Coding Companion"

One of the most significant barriers in STEM-focused PBL is the technical learning curve. In engineering or data science projects, students often spend the majority of their time wrestling with the syntax of a programming language (Python, C++) or the interface of a complex tool, rather than engaging with the core logic of the problem.²⁹ This cognitive overload leads to frustration and disengagement, particularly for non-majors or novices.

GenAI acts as a **technical scaffold** that lowers this barrier to entry. Tools like "ChatISA" (an in-house multi-model AI chatbot) or GitHub Copilot allow students to function as "architects" rather than "bricklayers." Instead of getting stuck on a missing semicolon, students can describe their intent in natural language ("Create a Python script to analyze this dataset for correlations"), and the AI generates the boilerplate code.²⁹

This shifts the learning focus from *syntax* to *semantics*. Students are forced to articulate the *logic* of their solution clearly to the AI, which reinforces higher-order computational thinking. In biology and chemistry, for example, students can use AI to generate R scripts for data visualization, allowing them to produce professional-grade charts without spending weeks learning the R language.³⁴ This "levels the playing field," allowing students with lower technical skills to contribute meaningfully to high-level problem solving.³⁵

Research confirms that GenAI tools disproportionately benefit novice learners. In studies of writing and coding, less skillful students gained more from AI assistance than their stronger peers, narrowing the performance gap.³⁶ This suggests that GenAI can function as an equalizer in the classroom, provided access is universal.

3.3 Simplifying Design Workflows: Generative CAD

In engineering and design education, the complexity of Computer-Aided Design (CAD) software is a major bottleneck. Students may have brilliant conceptual ideas for a CBL challenge (e.g., a sustainable housing unit) but lack the CAD skills to model them.

GenAI is revolutionizing this via **text-to-CAD** and generative design algorithms. New frameworks allow students to input text commands, blueprints, or even voice descriptions, which LLMs then convert into 3D models.³⁷ This "Generative Design" approach allows the software to become a co-creator. A student can define the *constraints* (e.g., "optimize this bracket for weight and strength using aluminum"), and the AI generates hundreds of valid

geometric options.³⁹

This empowers students to explore complex design spaces that would be manually impossible for a novice to model, effectively removing the "tool proficiency" barrier to creativity. By incorporating image recognition and voice detection, these frameworks lower the barrier to entry for 3D modeling, making it accessible to non-professionals and allowing for rapid iteration in the "Investigate" and "Act" phases of CBL.³⁷

3.4 Quantifying the Efficiency Gains

To understand the magnitude of this technical scaffolding, it is useful to look at the efficiency gains provided by GenAI in technical workflows. Data from user studies involving software development and design projects highlights how AI drastically reduces the time required for prototyping, specifically for novice learners compared to experts.

Metric	Novice (Traditional)	Novice (AI-Assisted)	Expert (Traditional)	Expert (AI-Assisted)	Impact Analysis
Time to Viable Prototype	12-15 Hours	3-5 Hours	4-6 Hours	2-3 Hours	Massive Compression: Novices achieve "expert-level" speed, reducing the gap significantly.
Syntax Error Frequency	High	Low	Low	Very Low	Barrier Removal: AI handles syntax, allowing novices to focus on logic.
Focus of Effort	Debugging / Syntax	Logic / Architecture	Architecture	Refinement	Cognitive Shift: Learning

		e			moves from "how to code" to "what to solve."
Output Complexity	Low (Basic Functionality)	High (Advanced Features)	High	Very High	Quality Uplift: Novices can implement complex features (e.g., APIs, UI) previously out of reach.

Table 1: Comparative Analysis of Prototyping Efficiency and Focus across Skill Levels. Synthesized from ²⁹, and ³⁷, illustrating the "leveling effect" of GenAI.

This data suggests that GenAI does not merely accelerate work; it fundamentally alters the nature of the task for novices, allowing them to bypass the "frustration trough" of technical syntax and engage directly with high-level problem solving.

4. Domain-Specific Solutions: Case Studies in Transformation

The application of GenAI to solve CBL/PBL problems is not uniform; it varies significantly by discipline. The following case studies illustrate how GenAI addresses specific socio-technical frictions in History, Engineering, and Healthcare.

4.1 History and Social Sciences: The Archival Barrier

The Problem: In historical PBL, students are often tasked with analyzing primary sources to reconstruct past events. However, the volume of archival data, the difficulty of archaic language, and the fragmentation of sources present a massive cognitive load. Students often resort to secondary sources (Wikipedia) because the primary research is too daunting, defeating the purpose of the inquiry.⁴⁰ Furthermore, students often struggle to empathize

with historical actors, viewing them as abstract figures rather than human beings.⁴¹

The GenAI Solution: GenAI tools serve as "**Historical Simulators**" and "**Archival Analysts**."

- **Simulation and Empathy:** Students can prompt an LLM to adopt the persona of a historical figure or a representative of a specific demographic (e.g., "a textile worker in 1890"). By interviewing this persona, students can explore motivations and perspectives in an interactive format that textbooks cannot provide.⁴² For example, in a study on ancient civilizations, students used AI to reconstruct past events and creative writings, leading to significant improvements in historical thinking and creativity.⁴¹
- **Analysis and Accessibility:** AI can transcribe, translate, and summarize vast quantities of historical text. It can extract entities (names, dates, locations) from disorganized archives, allowing students to visualize connections and focus on *interpretation* rather than data entry.⁴⁴ Advanced tools like **ReelMind.ai** allow for the creation of historical recreations using AI video generation, moving beyond static archival footage to visualize historical environments.⁴⁶ This removes the tedious "grunt work" of historical research, allowing students to engage with higher-order historical thinking skills like bias detection and synthesis.

4.2 Engineering and Design: The Simulation Gap

The Problem: Engineering PBL often fails because students cannot test their designs in the real world due to cost or safety constraints. They design "on paper" but lack feedback on viability. Furthermore, the disconnect between conceptual design and technical documentation (CAD) is significant.³⁷

The GenAI Solution: GenAI bridges the gap between **concept and simulation**.

- **Generative Design:** As noted, AI can generate 3D geometry from text, allowing rapid iteration.³⁷ This allows for "Generative Design" workflows where the software explores the solution space based on constraints defined by the student.³⁹
- **Virtual Scenarios:** GenAI can generate complex scenarios (e.g., "Simulate a supply chain disruption in Southeast Asia") for students to test their logistical models against. This provides the "friction" of the real world that is often missing in hypothetical classroom problems.⁴⁶
- **Creativity Enhancement:** In Visual Communication Design, the integration of customized GenAI tools has been shown to significantly enhance students' cognitive, emotional, and behavioral engagement. Experimental groups using AI demonstrated notable gains in creativity dimensions such as **fluency** (+15.5%) and **flexibility** (+15.2%) compared to control groups.²⁴

4.3 Healthcare and Bio-Sciences: The Clinical Reasoning Gap

The Problem: In medical PBL, students analyze patient cases. However, static paper cases

lack the dynamism of real patients. Students cannot "ask" the paper a follow-up question. Additionally, students struggle with scientific writing and lab report generation, often getting bogged down in formatting rather than analysis.⁴⁸

The GenAI Solution:

- **Virtual Patients:** GenAI chatbots can simulate patients with evolving symptoms. If the student fails to ask the right question, the "patient" does not reveal critical information, mimicking clinical reality.⁴⁹
- **Lab Report Scaffolding:** GenAI can critique draft lab reports, pointing out gaps in logic or data interpretation without rewriting the text for the student. It acts as a "TA in a pocket," providing 24/7 feedback on scientific reasoning.⁴⁸
- **Accessibility in Science:** In field biology courses (CUREs), GenAI has been used to rewrite complex research protocols into accessible language for English learners and first-generation students, reducing anxiety and increasing comprehension.⁵¹ Furthermore, tools like **ScienceAR** use AI to convert textbook illustrations into interactive 3D models, aiding visualization in resource-limited classrooms.⁵²

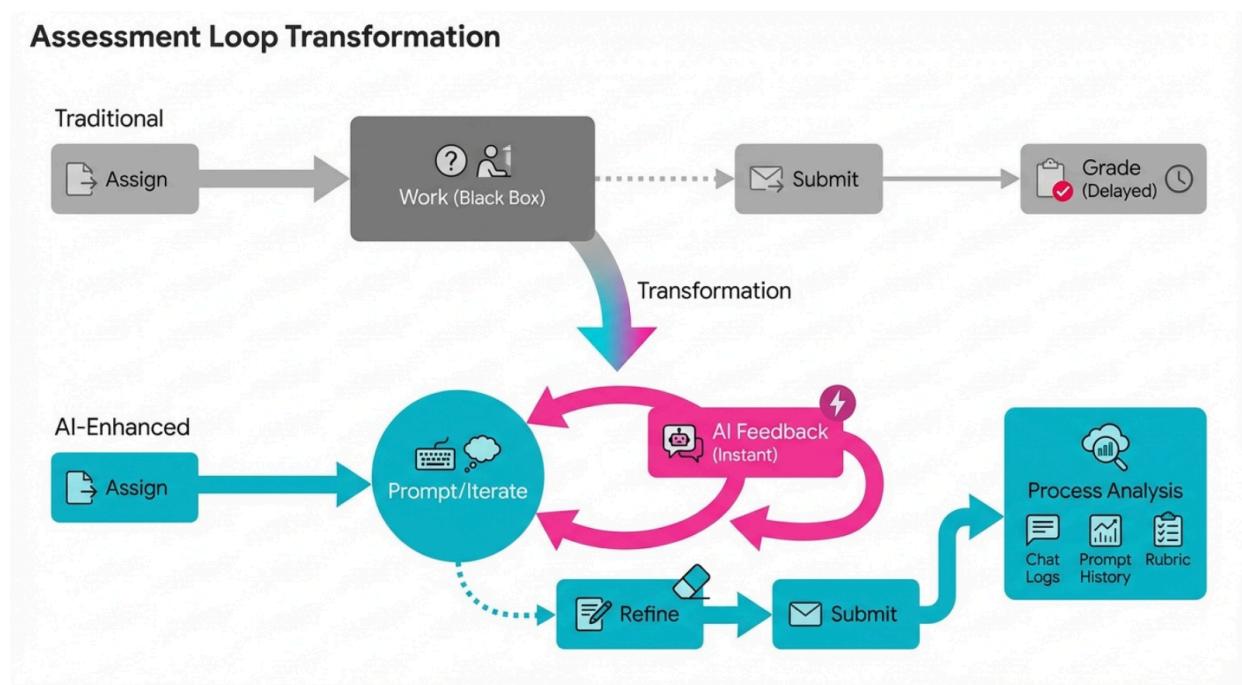
5. Transforming Assessment: From Product to Process

A central tension in CBL/PBL is assessment. Traditional grading focuses on the final artifact (the report, the model), but the pedagogical value lies in the process—collaboration, iteration, and resilience. Socio-emotionally, students resent group grades because they hide individual contributions. Socio-technically, the rise of AI plagiarism makes grading the final text unreliable.

GenAI enables a shift to **Process-Oriented Assessment**.

5.1 Analyzing the "Digital Exhaust"

Because student interactions in AI-enhanced CBL environments leave a digital footprint (prompts used, chat logs, version history), GenAI can analyze this data to assess *how* students learned.


- **Prompt Analysis:** Assessing the *questions* students asked the AI reveals their critical thinking depth better than their final answers. A student asking, "Write a paper on X" demonstrates low engagement; a student asking, "Critique this argument about X based on theory Y" demonstrates high engagement.⁴²
- **Collaboration Metrics:** As previously discussed, AI can quantify "turn-taking," "sentiment," and "responsiveness" in group chats, providing an objective metric for a "Collaboration Score" that was previously subjective.²⁷ This moves assessment from a black box to a transparent, data-driven process.

5.2 Real-Time Formative Feedback and Feedback Literacy

The "feedback gap" is a major issue in PBL; students often wait weeks for grades. GenAI provides **instant formative feedback**. It can review a project proposal against a rubric and offer specific suggestions for improvement before the student submits the final work.²⁶ This aligns with the "Act" phase of CBL, where iteration is key. By reducing the feedback loop from weeks to seconds, AI keeps students in the "flow" of learning.

Research comparing AI-enhanced feedback (e.g., Grammarly) with peer feedback indicates that they serve complementary roles. AI is superior for addressing surface-level issues (grammar, clarity, syntax), while peer feedback is more effective for higher-order concerns like organization and originality.⁵³ Integrating both creates a robust feedback ecosystem. Furthermore, using AI to score peer comments against a "Feedback Quality Rubric" allows educators to assess the *quality* of feedback students give to each other, fostering "Feedback Literacy"—a critical socio-emotional skill.⁵⁴

Paradigm Shift: The AI-Enhanced Assessment Loop

Transitioning from a linear, product-based assessment model to a cyclical, process-based model. GenAI enables continuous feedback loops based on 'digital exhaust' rather than just final artifacts.

6. Risks, Ethics, and the "Hollow Learner"

While GenAI solves significant socio-emotional and technical problems, it introduces new risks that must be managed to preserve the integrity of CBL/PBL.

6.1 The Risk of Over-Reliance and Atrophy

The "Coding Companion" and "Writing Coach" roles of AI carry a danger: **Cognitive Offloading**. If students use AI to bypass the "productive struggle" of learning, they become "Hollow Learners"—able to produce a result but lacking the underlying mental models.²⁵ In engineering, if AI generates the CAD model, does the student understand the structural physics? In history, if AI summarizes the archive, does the student learn to read critically?

This risk is compounded by "Anti-Learning" dynamics. Research suggests that LLMs can inadvertently reinforce "Model 1 theories-in-use"—defensive reasoning patterns that inhibit deep organizational learning. If an AI consultant provides advice that is superficially professional but fundamentally defensive, it blocks the pathway to deeper problem solving.⁵⁵

- *Mitigation:* CBL designs must shift from "answer-getting" to "answer-verifying." Assessments must require students to *defend* the AI's output and explain the logic behind it.⁵⁶

6.2 Algorithmic Bias and Hallucination

GenAI models are trained on internet data, which contains historical biases. When used in socio-emotional role-plays or historical simulations, the AI may reinforce stereotypes or generate factually incorrect ("hallucinated") information.²⁶ For example, AI-generated history may omit marginalized voices or present a sanitized version of events.⁴³

- *Mitigation:* **AI Literacy** must be a core learning outcome. Students must be trained to treat AI as a fallible source that requires verification. The act of "debugging" a hallucinated AI response can itself be a high-value PBL activity, as seen in biology classes where students corrected AI-generated summaries of T-cell activation.⁵¹

6.3 Data Privacy in Socio-Emotional Analytics

Using AI to analyze student chat logs for sentiment and conflict raises profound privacy concerns. Students may feel surveilled, which could inhibit the very psychological safety the system aims to create.²⁷

- *Mitigation:* Transparent data policies are non-negotiable. Students must opt-in to AI analytics, and data should be anonymized or aggregated where possible to protect individual privacy while still providing group-level insights.

6.4 Institutional Frameworks for Adoption

To manage these risks effectively, institutions require a structured framework. The **4E Framework (Embrace, Enable, Experiment, Exploit)** has been proposed to guide GenAI

adoption.⁵⁸ This involves:

1. **Embrace:** Articulating a clear vision for AI in the curriculum.
2. **Enable:** Providing training and access to tools (bridging the AI divide).
3. **Experiment:** Encouraging pilot projects in specific courses.
4. **Exploit:** Scaling successful practices across the institution.

7. Conclusions and Recommendations

Generative AI represents a watershed moment for Challenge-Based and Problem-Based Learning. It has the potential to solve the persistent "human" and "technical" frictions that have long hindered these pedagogies, transforming them from theoretical ideals into practical, scalable realities.

Key Conclusions:

1. **AI as the Socio-Emotional Glue:** By acting as a real-time mediator, a sentiment analyst, and a safe role-play partner, GenAI can stabilize the volatile group dynamics that often derail collaborative learning. It makes the "black box" of collaboration transparent and manageable.
2. **AI as the Great Equalizer:** By scaffolding technical skills (coding, CAD, writing) and simplifying complex workflows, GenAI reduces the "barrier to entry" for complex challenges. It allows a more diverse range of students—including those with lower digital capital—to participate in high-level problem solving, provided institutions address the access gap.
3. **Process over Product:** GenAI forces—and enables—a shift in assessment away from the final artifact (which AI can now create) toward the *process* of inquiry, collaboration, and iteration. "Digital exhaust" becomes the new portfolio.

Recommendations for Educators:

- **Integrate AI Literacy:** Teach students not just how to use AI, but how to *critique* it. Make "hallucination hunting" a standard activity.
- **Design for "Human-in-the-Loop":** Ensure that AI acts as a coach, not a replacement for human judgment or peer interaction. Use AI to *augment* peer feedback, not replace it.
- **Embrace the "AI Divide":** Proactively provide access to paid, high-quality tools for all students to prevent a new form of inequality. Do not rely on students' personal accounts.
- **Redesign Challenges:** Move away from challenges that ask for a "correct answer" toward challenges that require **curation, critique, and implementation**—tasks where AI can assist but cannot replace human agency.

By strategically integrating GenAI, educators can move CBL and PBL closer to their theoretical promise: a learning environment that is deeply engaging, inclusive, and rigorously connected to the real world.

Works cited

1. Challenge-Based Learning - DCU, accessed December 21, 2025, <https://www.dcu.ie/teu/challenge-based-learning>
2. Challenge-based education as a core for teaching and research, accessed December 21, 2025, <https://www.eciu.eu/news/challenge-based-education-as-a-core-for-teaching-and-research>
3. Integrating Industry 4.0 in Higher Education Using Challenge-Based ..., accessed December 21, 2025, https://www.researchgate.net/publication/364048488_Integrating_Industry_40_in_Higher_Education_Using_Challenge-Based_Learning_An_Intervention_in_Operations_Management
4. Integrating Industry 4.0 in Higher Education Using Challenge-Based ..., accessed December 21, 2025, <https://www.mdpi.com/2227-7102/12/10/663>
5. IMPLEMENTING CHALLENGE-BASED LEARNING FOR ..., accessed December 21, 2025, <https://www.utwente.nl/en/learning-teaching/educational-design/challenge-based-learning/documents/implementing-cbl-for-university-teachers-part-a.pdf>
6. Examining barriers in technology-enhanced problem-based learning, accessed December 21, 2025, https://www.researchgate.net/publication/227694620_Examining_barriers_in_technology-enhanced_problem-based_learning_Using_a_performance_support_systems_approach
7. What Is Challenge-Based Learning? | Tomorrow University, accessed December 21, 2025, <https://www.tomorrow.university/blog/what-is-challenge-based-learning-and-why-does-it-matter>
8. Challenge-Based Learning - UNIC European University, accessed December 21, 2025, <https://unic.eu/storage/app/media/ctl/TeachingGuides/UNIC%20Teaching%20Guide%20CBL.pdf>
9. CBL guide - Challenge Based Learning, accessed December 21, 2025, https://www.challengebasedlearning.org/wp-content/uploads/2019/02/CBL_Guide2016.pdf
10. (PDF) Collaboration, intragroup conflict, and social skills in project ..., accessed December 21, 2025, https://www.researchgate.net/publication/276883761_Collaboration_intragroup_conflict_and_social_skills_in_project-based_learning_175
11. Collaborative Learning Strategies In The Classroom, accessed December 21, 2025, <https://recruit.foreignaffairs.gov.fj/libweb/E0JAB1/314241/CollaborativeLearningStrategiesInTheClassroom.pdf>
12. Generative AI: Implications and Applications for Education1 - AI4edu, accessed December 21, 2025,

<https://ai4edu.eu/wp-content/uploads/2023/10/Generative-AI-Implications-and-Applications-for-Education.pdf>

13. From admiration to apprehension: the evolving role of generative AI ..., accessed December 21, 2025,
<https://www.emerald.com/ijlt/article/doi/10.1108/IJLT-11-2024-0262/1312573/From-admiration-to-apprehension-the-evolving-role>
14. Generative AI: A Survey Of Historical Development, Emerging ..., accessed December 21, 2025,
<https://www.genesispcl.com/articles/vol-2-issue-1/cser-25-21-0004/>
15. Socio-emotional conflict in collaborative learning—A process ..., accessed December 21, 2025,
https://www.researchgate.net/publication/264560914_Socio-emotional_conflict_in_collaborative_learning-A_process-oriented_case_study_in_a_higher_education_context
16. Psychological Safety In The Agile Community - Medium, accessed December 21, 2025,
<https://medium.com/the-liberators/psychological-safety-in-the-agile-community-96100e31b6cb>
17. (PDF) AI-driven feedback for improving teamwork and learning in ..., accessed December 21, 2025,
https://www.researchgate.net/publication/395007526_AI-driven_feedback_for_improving_teamwork_and_learning_in_collaborative_engineering_design
18. Artificial Intelligence in Conflict Resolution: A Comprehensive ..., accessed December 21, 2025, <https://www.preprints.org/manuscript/202505.0375>
19. (PDF) Artificial Intelligence in Conflict Resolution - ResearchGate, accessed December 21, 2025,
https://www.researchgate.net/publication/391536114_Artificial_Intelligence_in_Conflict_Resolution_A_Comprehensive_Review_of_Techniques_and_Applications
20. collaborative project decision-making through generative ai-driven ..., accessed December 21, 2025,
https://www.researchgate.net/publication/394604591_COLLABORATIVE_PROJECT_DECISION-MAKING_THROUGH_GENERATIVE_AI-DRIVEN_CONVERSATIONAL_DASHBOARDS
21. How Large Language Models Enhance Teamwork and Conflict ..., accessed December 21, 2025,
<https://theprojectmgr.com/how-large-language-models-enhance-teamwork-and-conflict-resolution-training/>
22. Role Play | Udemy, accessed December 21, 2025,
<https://www.udemy.com/ai-roleplay/>
23. Dialogue at Scale: AI, Soft Skills, and the Future of Assessment, accessed December 21, 2025,
<https://er.educause.edu/articles/2025/10/dialogue-at-scale-ai-soft-skills-and-the-future-of-assessment>
24. Enhancing student engagement and higher-order thinking in human ..., accessed December 21, 2025,

https://www.researchgate.net/publication/391337386_Enhancing_student_engagement_and_higher-order_thinking_in_human-centred_design_projects_the_impact_of_generative_AI-enhanced_collaborative_whiteboards

25. Full article: Supporting peer learning with artificial intelligence, accessed December 21, 2025,
<https://www.tandfonline.com/doi/full/10.1080/14703297.2025.2530118>
26. Enhancing Peer Feedback Practices with Generative AI, accessed December 21, 2025,
https://www.researchgate.net/publication/392690948_Enhancing_Peer_Feedback_Practices_with_Generative_AI
27. Collaborative Uses of GenAI Tools in Project-Based Learning - MDPI, accessed December 21, 2025, <https://www.mdpi.com/2227-7102/15/3/354>
28. Access to Digital Communication Technologies Among First Year ..., accessed December 21, 2025,
https://www.researchgate.net/publication/321977143_The_Digitally_Disadvantaged_Access_to_Digital_Communication_Technologies_Among_First_Year_Students_at_a_Rural_South_African_University
29. ChatISA: A Prompt-Engineered, In-House Multi-Modal Generative AI ..., accessed December 21, 2025, [https://arxiv.org/pdf/2407.15010](https://arxiv.org/pdf/2407.15010.pdf)
30. How Broadening AI Access Can Help Bridge the Digital Divide, accessed December 21, 2025,
<https://er.educause.edu/articles/2024/11/how-broadening-ai-access-can-help-bri-dge-the-digital-divide>
31. AI as the New Digital Divide for First-Generation Students - WGU Labs, accessed December 21, 2025,
<https://www.wgulabs.org/posts/ai-as-the-new-digital-divide-for-first-generation-students>
32. The GenAI divide among university studentsA call for action.pdf, accessed December 21, 2025,
<https://eprints.whiterose.ac.uk/id/eprint/230084/1/The%20GenAI%20divide%20among%20university%20studentsA%20call%20for%20action.pdf>
33. AI-Enhanced Problem-Based Learning for Sustainable Engineering ..., accessed December 21, 2025, <https://www.mdpi.com/2071-1050/17/20/9038>
34. Scientific Charting Tools for Biology and Medicine Research Papers, accessed December 21, 2025,
<https://www.scribd.com/document/930432539/Scientific-Charting-Tools-for-Biology-and-Medicine-Research-Papers>
35. (PDF) Levelling the playing field through GenAI: Harnessing artificial ..., accessed December 21, 2025,
https://www.researchgate.net/publication/386275230_Levelling_the_playing_field_through_GenAI_Harnessing_artificial_intelligence_to_bridge_educational_gaps_for_equity_and_disadvantaged_students
36. From Digital Divide to Equity-Enhancing Diffusion: Generative AI ..., accessed December 21, 2025,
<https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1129&context=c>

omm_articles

37. Generative AI meets CAD: enhancing engineering design to ..., accessed December 21, 2025,
<https://researchportal.tuni.fi/en/publications/generative-ai-meets-cad-enhancing-engineering-design-to-manufactu/>
38. (PDF) Generative AI meets CAD: enhancing engineering design to ..., accessed December 21, 2025,
https://www.researchgate.net/publication/392440353_Generative_AI_meets_CAD_enhancing_engineering_design_to_manufacturing_processes_with_large_language_models
39. Teaching Design the Generative Way - Fusion Blog - Autodesk, accessed December 21, 2025,
<https://www.autodesk.com/products/fusion-360/blog/teaching-generative-design/>
40. The role and influence of the internet in history education, accessed December 21, 2025,
https://www.researchgate.net/publication/372391332_The_role_and_influence_of_the_internet_in_history_education
41. Developing historical thinking skills and creativity of visually ..., accessed December 21, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC12213877/>
42. AI in Assignments – AI and Society Initiative at Canisius University, accessed December 21, 2025,
<https://blogs.canisius.edu/generativeai/ai-and-academics-home/ai-and-academics-ai-in-assignments/>
43. How are faculty using generative AI in their classrooms?, accessed December 21, 2025,
<https://researchmethodscommunity.sagepub.com/blog/how-are-faculty-using-generative-ai-in-their-classroomsnbsp>
44. Working Paper: Implementing Generative AI in the Historical Studies, accessed December 21, 2025,
https://www.researchgate.net/publication/389498489_Working_Paper_Implementing_Generative_AI_in_the_Historical_Studies
45. The Democratization of AI and its Transformative Potential in Social ..., accessed December 21, 2025,
<https://www.socialstudies.org/system/files/2023-04/se-8702118.pdf>
46. When History Education: AI for Historical Learning | ReelMind, accessed December 21, 2025,
<https://reelmind.ai/blog/when-history-education-ai-for-historical-learning>
47. Generative AI In An LMS: The Future Of Learning - eLearning Industry, accessed December 21, 2025,
<https://elearningindustry.com/the-future-of-learning-generative-ai-in-learning-management-systems>
48. An Analysis of AI-Generated Laboratory Reports across the ..., accessed December 21, 2025, <https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00581>
49. Student perceptions of GenAI as a virtual tutor to support ... - NIH, accessed

December 21, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC12210649/>

- 50. (PDF) Exploring how generative AI contributes to the motivated ..., accessed December 21, 2025,
https://www.researchgate.net/publication/386377181_Exploring_how_generative_AI_contributes_to_the_motivated_engagement_and_learning_production_of_science-oriented_students
- 51. Generative AI as a Sociotechnical Challenge: Inclusive Teaching ..., accessed December 21, 2025, <https://www.mdpi.com/2673-9585/5/3/18>
- 52. Enhancing student engagement through augmented reality in ..., accessed December 21, 2025,
<https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2025.16280/04/full>
- 53. Enhancing collaborative writing with AI-enhanced feedback in ..., accessed December 21, 2025,
<https://www.emerald.com/aiie/article/doi/10.1108/AIIE-03-2025-0042/1315990/Enhancing-collaborative-writing-with-AI-enhanced>
- 54. (PDF) Expanding possibilities for generative AI in qualitative analysis, accessed December 21, 2025,
https://www.researchgate.net/publication/393793110_Expanding_possibilities_for_generative_AI_in_qualitative_analysis_Fostering_student_feedback_literacy_through_the_application_of_a_feedback_quality_rubric
- 55. Large Language Models Reproduce Our Double-Loop Learning ..., accessed December 21, 2025, <https://arxiv.org/pdf/2507.02283>
- 56. Using Generative AI as a Learning Tool (Higher Ed Guide), accessed December 21, 2025,
<https://professordrake.com/2025/08/using-generative-ai-as-a-learning-tool-higher-ed-guide/>
- 57. Supporting Collaboration in Challenge-Based Learning by ..., accessed December 21, 2025,
https://www.researchgate.net/publication/372225510_Supporting_Collaboration_in_Challenge-Based_Learning_by_Integrating_Digital_Technologies_Insights_from_a_Design-Based_Research_Study
- 58. Framework for Adoption of Generative Artificial Intelligence (GenAI ...), accessed December 21, 2025,
https://www.researchgate.net/publication/382962763_Framework_for_Adoption_of_Generative_Artificial_Intelligence_GenAI_in_Education